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Understanding Large-Scale Networks

Rocketfuel dataset 7018
10152 nodes, 28638 links, diameter 12

• Hard to visualize due to scale

• Unclear what is essential and what is not 

for overall performance, reliability and 

security

• Much of the existing work on “complex 

networks” focuses on local measures such 

as degree distribution, clustering 

coefficients, etc. at the expense of global

properties

• Need more fundamental ways to 

“summarize” critical network information

• A promising direction is to look at key 

geometric characteristics of networks:  

dimension and curvature
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Dimension -- Degrees of Freedom
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Dimension

Dimension of a Lattice & Average Shortest Path Lengths

d*4(D-1)d*3(D-1)d*2(D-1)d*1(D-1)General (D,d)

64=4*4236=4*3216=4*226=6*12Cube (D=3,d=6)

24=6*4118=6*3112=6*216=6*11Triangle (D=2,d=6)

12=3*419=3*316=3*213=3*11Hexagon (D=2,d=3)

16=4*4112=4*318=4*214=4*11Square (D=2,d=4)

4-hops 
away

3-hops 
away

2-hops 
away

1-hop 
away

Circumference of 
Configuration

(dimension D, degree d)

Average length of a shortest path <h> of a grid 
in dimension D 

≈ (D/D+1)(DN/d)1/D ≈ O(N1/D)

• How fast does a “typical ball” grow? Look at circumference 

or volume as a function of “radius”



5 Nov. 2010            
I. Saniee  All Rights Reserved © Alcatel-Lucent 2010, #####

Dimension

Dimension of a Network & Its Average Shortest Path Length

Measure the number of neighbors of a node X h hops 

away.  How does this number scale with h?  If roughly 

like h∆-1 then we say ∆ is the dimension of the graph in 

the neighborhood of X.
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Dimension

Data Source – Rocketfuel (Washington U, NSF 2002-05)

Look at scaling of the average 
shortest path length <h> 

•In 2-dim grid, <h> ~√N (or ~N1/D in 

D-dimensional grid)

•Look at “Rocketfuel” data, 

[Washington University researchers’

detailed connectivity data from 

various ISPs 2002-2003] 

• <h> does not scale like √N or N1/D

but are more like log(N) -- “Small 

World” like

=> RF networks do not appear to 
be grid-like (or flat) nor do they 

exhibit characteristics of finite 

dimensions
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Curvature -- Deviation from the Flat
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Curvature

Basic Geometry: Vertex Curvature of Polyhedra

•In the plane, sum of the face angles at each (internal) vertex is 2π

•A vertex has “angle defect” when                            

-- positive curvature or “spherical”

•A vertex has “angle excess” when               

--negative curvature or “hyperbolic”

•By Descartes’ theorem for polyhedra

where χ(P) is the Euler characteristic of the polyhedron (=V − E + F =2 if there 

are no holes and else =2-2g where g is the number of holes)
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Curvature

Combinatorial Vertex Curvature for Planar Graphs

One could imitate the previous definition to define a 

combinatorial angular defect/excess at vertices of a 

planar graph (net of 2π). E.g.,

In effect, assume each face is a regular n-gon, compute 

the facial angles, add up and subtract from 2π

[Higuchi’01]

Gauss-Bonnet theorem (extension of Descartes’) then 

states
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Curvature

Non-Planar Graphs Always Minimally Embed on Surfaces

 12/)4)(3( −−−−−−−−≤≤≤≤ NNg

What can be said about non-planar graphs?  Use the fact that all finite graphs are 

locally planar.

[Ringel-Youngs ’68]  (“All graphs with N≥3 nodes are locally 2-dimensional.”) For 

N≥3, any G=(N,L) can be embedded in Tg, a torus with g holes, where

The minimal g is called the genus of the graph G.

K5
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Curvature

Non-Planar Graphs -- Strong Embeddings

But there is more that we need:

[Edmonds-Heffter? see Mohar-Thomassen and others].  The above embedding 

can always be done “strongly”, i.e., where the resulting embedding on Tg has 

faces that are 2-cells (equivalent to disks). 
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B, C, D and E are vertices B, C, D and E are vertices 
of the one octagonal face. of the one octagonal face. 
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Curvature

Non-Planar Graphs: Combinatorial Curvature

Now with well-defined faces, the previous definition of vertex curvature can be 
reused:

And by Gauss-Bonnet Theorem

We get the total curvature!
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Curvature

Summary (So Far)

[Exercise]  What is the genus of K7?  Identify all faces of the strong minimal embedding of K7 on T
1.  

Compute the curvature at each vertex. Verify that χ(K7)=2-2g.   

The Euler Characteristic of a graph is an intrinsic invariant that 
determines its total (combinatorial) curvature*.  We say a graph is 

� “flat” when χ(G)=0 

� “spherical” when χ(G)>0

� “hyperbolic” when χ(G)<0

Note.  It is not easy to compute χ(G) for large scale networks!

* There is also a similar concept of “discrete curvature” for graphs that uses actual edge lengths and 

angles.   It results in the same χ(G).

χ<0χ>0

χ=0
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Dimension and Curvature

So far:

Managed to define (relatively) satisfactory notions of 
dimension and curvature for networks but

� dimension does not appear to be finite

� curvature does not appear to be computable

Give up?

Possible alternative: Consider metric structure of networks
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Other Locally 2-Dimensional Models: 
The Poincaré Disk H2

Consider the unit disk                        with length metric given by

the hyperbolic metric.

Advantages

•In the small scale it is 2-dimensional, but has much slower scaling of 

geodesics (shortest paths) than √N

•Has meaningful small-scale and large-scale curvatures

Relationship to graphs?  The Poincaré disk comes with numerous natural 

“scaffoldings” or “tilings”.
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Scaffoldings of H2: Hyperbolic Regular Graphs

Consider Χp,q tilings (isometries) of H2, that at each vertex consist of
q regular p-gons for integers p & q with (p-2)(q-2)>4 (flat with 
equality)

Examples:

Note. Since networks of interest to us are typically finite, we’ll 
consider truncations of Χp,q , the part within a (large enough) 
radius r from the center. Call this TΧp,q.

ΧΧΧΧ3,7 ΧΧΧΧ4,5 ΧΧΧΧ6,4
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Some Key Properties of ΧΧΧΧp,q

1. Negative local curvature. The local 

combinatorial curvature at each node of 

Χp,q is negative

2 . Exponential growth. Number of nodes 

within a ball of radius r is proportional to λλλλr

for some λ λ λ λ ≡ λλλλ(p,q) > 1 (e.g., for Χ3,7 , λλλλ = φ, φ, φ, φ, 

the golden ratio) or equivalently

2’. Logarithmic scaling of geodesics. For ( a 

finite truncation of) Χp,q with N nodes, the 

average geodesic (shortest path length) 

scales like O(log(N))
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δδ

Curvature in the Large: Geodesic Metric Spaces

•Computation of total curvature of non-flat networks with 

varying nodal degrees via            does not appear to be 

possible/easy nor does it provide information about the large-

scale properties of networks

•A more direct definition of (negative) curvature in the large

is the thin-triangle condition for a geodesic metric space (or a 

CAT(-κ) space): 

[M. Gromov’s Thin Triangle Condition for a hyperbolic 

geodesic metric space] There is a (minimal) value δ≥0 such 

that for any three nodes of the graph connected to each other 

by geodesics, each geodesic is within the δ-neighborhood of the 

union of the other two.

Example.  For H2, δ = ln(√2 +1).  [Sketch.  Largest inscribed circle must be in 

largest area triangle, AreaH(ABC) = π-(α+β+χ), maximized to π when α, β, χ=0 or 

when A, B, & C are on the boundary.]
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What Can We Say About Communication Networks?

Communication networks 

are (geodesic) metric 

spaces via reasonable 

link metrics (e.g., the 

hop metric) 

Is there evidence for 

negative curvature in 

real networks?

We consider 10 Rocketfuel 

networks and some 

prototypically flat or 

curved famous synthetic 

networks to test this 

hypothesis
In RF data, a node is a unique IP address and 
a link is a (logical) connection between a pair
of IP addresses enabled by routers, physical 

wires between ports, MPLS, etc.

Extracted topologies from RF of 10 global IP networksExtracted topologies from RF of 10 global IP networks
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Rocketfuel IP Networks

1221/Telstra1221/Telstra 1239/Sprintlink1239/Sprintlink 1755/Ebone1755/Ebone 2914/Verio2914/Verio

3257/Tiscali3257/Tiscali 3356/Level33356/Level3 3967/Exodus3967/Exodus 4755/VSNL4755/VSNL

6461/Abovenet6461/Abovenet 7018/AT&T7018/AT&T
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Some “Famous” Synthetic Networks: E-R, W-S, B-A

WW--S: Grid with small (1S: Grid with small (1--5%) 5%) 
additional random linksadditional random links

G(N,pG(N,p) random graph) random graph

p~1/N, GC~ p~1/N, GC~ O(ln(NO(ln(N))))
p~ln(Np~ln(N)/N, GC~O(N))/N, GC~O(N)

BB--A: Start with some nodesA: Start with some nodes
and add nodes sequentiallyand add nodes sequentially
and at each iteration join and at each iteration join 
new node to existing node inew node to existing node i

with probability with probability 
p= p= d(i)/d(i)/∑∑d(id(i))

Then Then P(kP(k) ~ k) ~ k--33
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Experiments and Methodology

We ran experiments on all Rocketfuel networks plus a few 
prototypical flat/curved networks to test our key hypothesis:

1. Dimension. “Growth test” – Polynomial or exponential?

� Consider the volume V(r) as a function of radius r for arbitrary
centers

[In flat graphs volume growth is typically polynomial in radius r]

2. Curvature. “Triangle test” – Are triangles are universally 

δδδδ-thin

� Randomly selected 32M, 16M, 1.6M triangles for networks with 
more than 1K nodes and exhaustively for the remainder

� For each triangle noted shortest side L and computed the δ

� Counted number of such triangles, indexed by δ and L

[In flat graphs δ grows without bound as the size of the smallest 
side increases]

We conduct “growth” and “triangle” tests

CC

BB

AA

(smallest side, radius of 

inscribed circle)=(AB,δ)
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1. Growth Charts

Volume (number of points within distance r) as a function of radius r

from a “center” of the graph. Flattening of curves for larger r is due 

to boundary effects / finite size of network.

Recall that:

Euclidean growth 

V(r) ≈ rD

then dimension is 

“D”

Exponential 

growth V(r) ≈ θ r

then dimension is 

“infinity”
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2. Triangle Test - Rocketfuel 7018 & Triangular Grid

(a) Probability PL(δ) for randomly chosen triangles whose shortest side is L to have a given δ for the network 7018(AT&T 
network) which has 10152 nodes and 14319 bi-directional links and diameter 12. The quantities δ and L are 
restricted to integers, and the smooth plot is by interpolation.

(b) Similar to (a), for a (flat) triangular lattice with 469 nodes and 1260 links. (The smaller number of nodes is sufficient 
for comparing with (a) since the range for L is large due to the absence of the small world effect.)
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Summary of Triangle Tests for Rocketfuel Networks

The average δ as a function of L, E[δ](L), for the 10 IP-layer networks studied here, and for the Barabasi-Albert 
model with k = 2 and N = 10000 (11th curve) and the hyperbolic grid X3,7 (12th curve). On the other hand, a 
Watts- Strogatz type model on a square lattice with N = 6400, open boundary conditions and 5% extra random 
connections (13th curve) and two flat grids (the triangular lattice with diameter 29 and the square lattice with 
diameter 154) are also shown.
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Where to go from here?

• OK, these ten RF datasets and some “well-known” large-scale 
networks exhibit

� Exponential growth / logarithmic scaling of shortest paths

� Negative curvature in the large

So what?

Turns out negatively-curved networks exhibit specific features that 
affect their critical properties -- Existence of a “core”:

� O(N2) scaling of “load” (1 unit between all node pairs)

� Non-random points of critical failures

� Non-random points of security
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The Downside of Hyperbolicity: Quadratic Scaling of Load
(“Betweenness Centrality” and Existence of “Core”)

Plot of the maximum load Lc(N) –- maximal number of geodesics intersecting at a node -- for each network in 
the Rocketfuel database as a function of the number of nodes N in the network. Also shown are the maximum 

load for the hyperbolic grid X3,7, the Barabasi-Albert model with k = 2, the Watts-Strogatz model and a 
triangular lattice, for various N. The dashed lines have slopes of 2.0 and 1.5, corresponding to the hyperbolic 

and Euclidean cases respectively.
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Metric Properties of RF and Other networks

•So far we worked with the unit-cost (hop) metric

•Can things change significantly through changes in the metric?

•Yes, and no!  Look at toy networks again:

•Metrics can change things but evidently not by that much! (Need 
rigorous proofs to determine by how much)

A

B

TT3,73,7 with hyperbolic metricwith hyperbolic metric

load ~ O(Nload ~ O(N22))

A

B

TT3,73,7 with Euclidean metricwith Euclidean metric

load ~ O(Nload ~ O(N22)/logN)/logN

TT3,73,7 with modified hyperbolic with modified hyperbolic 

metric, load ~ O(Nmetric, load ~ O(N22))

A

B
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Downside of Metric Changes: 
Long Paths (w.r.t. the hop metric)

Even if we can eliminate O(N2) scaling of load via metric changes, we’re liable 

to pay a (big) price:

[Bridson-Haefliger]  Let X be a δ-hyperbolic geodesic metric space.  Let C be 

a path in X with end points p and q.  Let [p,q] be the geodesic path.  Then for 

every x on [p,q]

where l(C) is the length of C.

Open Question.  Can paths with small deviations from geodesics decrease 

“load” by much?  [Unlikely in the mathematical sense but perhaps yes in 

practice.]

1||)(log||),( 2 ++++≤≤≤≤ ClCxd δ



All Rights Reserved © Alcatel-Lucent 2010, #####

Key Claims: 
Network Curvature -> Congestion, Reliability and Security

Numerical studies show that congestion is a property of the 

large-scale geometry of the networks – large-scale 

curvature -- and does not necessarily occur at vertices of 

high degree but rather at the points of high cross-section 

(the “core”)

At the “core” –- intersection of largest number of shortest 

paths – load scales as quadratic as function of network size

Shortest path routings

� (Upside) Are very effective, as diameter is small compared 

to N, e.g., TTL of ~20 good enough for all of the Internet!

� (Downside) Lead to 
� congestion

� non-random failure can be severe 

� certain nodes exhibit more significant security compromise

30 INRIA Workshop Oct. 2009            
iraj Saniee  

ΧΧΧΧΧΧΧΧ3,73,7

Nodal loads
need not be 
related to 
nodal 
degrees
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A Taxonomy for Large-Scale Networks

Taxonomy of key 
characteristics of networks 
and their overlaps in a 
schematic diagram. 
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CHALLENGES: Impact of Curvature on Metrics
Implications for CDNs, Cloud, Virtual Network Design

•Analysis of larger datasets

� Communication data

� Bio data

� Social network data

•Scaling of algorithms for detection of hyperbolicity in much larger 
graphs (of ~109 nodes)

•How does “negative curvature in the large” affect performance, 
reliability and security?

� Speed of information/virus spread � spectral properties of large graphs

� Impact of correlated failures � Core versus non-core

•How does the O(N2) scaling of load change as a function of alternative 
load profiles, e.g., for localization in CDNs?

•How O(N2) affect reliability and security?  Does a core add or diminish 
robustness / security?

•How to leverage hyperbolicity for data centers / cloud / 
virtualization?  Are there fundamental designs?

•How to leverage hyperbolicity for caching and CDNs?  DHTs?



33 Nov. 2010            
I. Saniee  All Rights Reserved © Alcatel-Lucent 2010, #####

Some Recent References

[1] O. Narayan, I. Saniee, Scaling of Load in Communications Networks, 

Physical Review E, Sep. 2010.

[2] O. Narayan, I. Saniee, The Large Scale Curvature of Networks, 

arXiv:0907.1478 (July 2009) 

[3] O. Narayan, I. Saniee, G. Tucci, Lack of spectral gap and hyperbolicity in 

asymptotic Erdos-Renyi random graphs, arXiv:1099.5700v1 (Sep 2010)

[4] Y. Baryshnikov, G. Tucci, Scaling of Load in delta-Hyperbolic Networks,       

arXiv:1010.3304 (March 2010)

[5] E. Jonckheere, M. Lou, F. Bonahon, Y. Baryshnikov, Euclidean versus 

Hyperbolic Congestion in Idealized versus Experimental Networks

arXiv:0911.2538v1 (Nov. 2009) 

[6] Matthew Andrews. Approximation algorithms for the edge-disjoint paths 

problem via Raecke decompositions. FOCS '10         


